47 research outputs found

    Data visualization of temporal ozone pollution between urban and sub-urban locations in Selangor Malaysia

    Get PDF
    In Malaysian environment, ground level zone has been reported as one of the most important pollutants that contribute to air quality degradation. The odourless and invisible nature of the pollutant has caused problems for individuals to realize and notice the existence of Ozone pollution in the environment. Thus, this study was conducted with the aim to assess and visualize the occurrence of potential Ozone pollution severity of two chosen locations in Selangor, Malaysia: Shah Alam (urban) and Banting (sub-urban). Data visualization analytics were employed using Ozone exceedances and Principal Component Analysis (PCA). The study results have shown an increasing pattern of Ozone pollution occurrence with several modes of distinct diurnal variations at the locations. The study also provides strong insights that Banting might experience a higher potential for Ozone pollution severity compared to Shah Alam.Keywords: ozone pollution; air quality; data visualization; data analytics; principalcomponent analysis

    Supramolecular interactions in aromatic structures for non-optical and optical chemosensors of explosive chemicals

    No full text
    The scientific investigation based on the molecular design of aromatic compounds for high-performance chemosensor is challenging. This is because their multiplex interactions at the molecular level should be precisely determined before the desired compounds can be successfully used as sensing materials. Herein, we report on the molecular design of chemosensors based on aromatic structures of benzene as the organic motif of benzene-1,3,5-tricarboxamides (BTA), as well as the benzene pyrazole complexes (BPz) side chain, respectively. In the case of BTA, the aromatic benzene acts as the centre to allow the formation of π–π stacking for one-dimensional materials having rod-like arrangements that are stabilized by threefold hydrogen bonding. We found that when nitrate was applied, the rod-like BTA spontaneously formed into a random aggregate due to the deformation of its hydrogen bonding to form inactive nitroso groups for non-optical sensing capability. For the optical chemosensor, the aromatic benzene is decorated as a side-chain of BPz to ensure that cage-shaped molecules make maximum use of their centre providing metal-metal interactions for fluorescence-based sensing materials. In particular, when exposed to benzene, CuBPz displayed a blue-shift of its original emission band from 616 to 572 nm (Δ = 44 nm) and emitted bright orange to green emission colours. We also observe a different mode of fluorescencebased sensing materials for Au-BPz, which shows a particular quenching mechanism resulting in 81% loss of its original intensity on benzene exposure to give less red-orange emission (λ = 612 nm). The BTA and BPz synthesized are promising high-performance supramolecular chemosensors based on the non-optical and optical sensing capability of a particular interest analyte

    Mycobactin Analogues with Excellent Pharmacokinetic Profile Demonstrate Potent Antitubercular Specific Activity and Exceptional Efflux Pump Inhibition

    No full text
    In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges

    Mycobactin analogues with excellent pharmacokinetic profile demonstrate potent antitubercular specific activity and exceptional efflux pump inhibition

    No full text
    In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges
    corecore